Search results

Search for "photoredox catalyst" in Full Text gives 49 result(s) in Beilstein Journal of Organic Chemistry.

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • is worthy of being called anti-Markovnikov hydrochlorination was reported by Nicewicz in 2014 [90]. The inversion of regioselectivity is best understood by examination of the proposed catalytic cycle (Figure 8). First, electronic excitation of photoredox catalyst 149 at 450 nm results in an excited
  • one suggested by Nicewicz [90], the reaction is conceptually distinct (compare Figure 8 and Figure 9). Initially, 9-arylacridine 160, which is not a photoredox catalyst itself, undergoes protonation by hydrochloric acid to form the corresponding acridinium ion 161, which in turn is photoredox-active
PDF
Album
Review
Published 15 Apr 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • ] (Scheme 11A). This transformation occurred under light irradiation either in the presence or absence of a RuII photoredox catalyst. It was found that the chiral lithium phosphate catalyst (R)-TRIP-Li played a crucial role in accelerating the reaction rate. Following an in-depth analysis of the mechanism
  • in the visible region. These species are referred to in the literature as electron donor–acceptor (EDA) complexes [58][59] and undergo photoexcitation in the absence of an exogenous photoredox catalyst. When excited by visible light, an intra-complex SET from the donor substrate D to the NHPI ester
PDF
Album
Perspective
Published 21 Feb 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • novel metallaphotoredox catalysis by combining the NaI/PPh3 photoredox catalyst with a Cu(I) catalyst to accomplish diverse C–O/N cross-couplings of alkyl N-hydroxyphthalimide esters 3 with various phenols/secondary amines 30 (Scheme 13) [24]. It was anticipated the utilization of computational methods
PDF
Album
Review
Published 22 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • photoredox catalyst mediated by light to overcome the challenge of metal contamination in the precipitated polymers [58]. After the ATRP reaction, a reactive chain end retains as a stable alkyl halide moiety. Therefore, ATRP is particularly suitable for the synthesis of polymers with complex architectures
PDF
Album
Review
Published 18 Oct 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • heterocyclic aromatics with α-C–H bonds of ethers was achieved under the irradiation of a 34 W blue LED using rose bengal (RB) as the organic photoredox catalyst, TBHP as oxidizing agent, and DABCO as the base (Scheme 43c) [125]. The wide scope of substrates, aerobic conditions, and gram-scale suitability are
PDF
Album
Review
Published 06 Sep 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • , the optimized conditions from our group [34] from a previously reported electrochemical procedure [35] were employed (i.e., solvent CH3CN/H2O 80:20, 0.1 M n-Bu4Br, inert argon atmosphere). As for the photoredox catalyst we used the “first choice” TiO2 and irradiation with 365 nm LED light. In the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • doublet states which are photoexcited to yield super-oxidants or super-reductants while recycling e-PRC involves the turnover of a ‘standard’ (typically closed-shell) photoredox catalyst (PC) by means of anodic oxidation or cathodic reduction [28][29]. Furthermore, a series of new protocols using
PDF
Album
Review
Published 28 Jul 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • manner due to their intrinsic mildness and broad substrate compatibility [16][17][18][19][20]. This transformative synthetic tool often utilizes direct single-electron transfer (SET) between an electronically excited photoredox catalyst and an organic substrate, resulting in oxidation or reduction, to
  • visible-light irradiation of the photoredox catalyst [Ir(dF(CF3)ppy)2(dtbpy)]PF6 to access the excited state *[Ir(dF(CF3)ppy)2(dtbpy)]PF6, which can trigger SET oxidation of 8. Rapid decarboxylation leads to α-amino radical V (and the reduced photocatalyst), which is intercepted by the pendant double bond
  • steric hindrance. Conclusion In summary, this work illustrates, once more, the synthetic potential of an Ir-polypyridyl complex as a photoredox catalyst that can efficiently convert visible light into chemical energy. In addition, this catalyst was applied to demonstrate the proposed radical mechanism
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • can operate as an efficient photoredox catalyst, providing an economical access to construct important oxindole scaffolds containing a quaternary carbon center. This synthetic method features a broad substrate scope, good functional group tolerance and operational simplicity. Mechanistic
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • photoredox-catalyst or electrochemically on an anode. An example of the photochemical aerobic benzylic CH-oxidation employing a heterogeneous photoredox catalyst, nanosized TiO2, was demonstrated by our group [85] (Scheme 9). Mixing of NHPI and TiO2 leads to the emergence of visible light absorbance
PDF
Album
Perspective
Published 09 Dec 2022

DDQ in mechanochemical C–N coupling reactions

  • Shyamal Kanti Bera,
  • Rosalin Bhanja and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2022, 18, 639–646, doi:10.3762/bjoc.18.64

Graphical Abstract
  • as C–P [17], C–O [18][19][20], and C–S [21] were achieved using DDQ as an oxidant [22][23]. In addition, the utilization of DDQ as a photoredox catalyst [24] and co-catalyst [25][26] have also been documented in organic synthesis [27]. DDQ-mediated oxidative C–N cross-coupling reactions are well
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2022

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • , molecular oxygen as the oxidant, and TiO2-immobilized ruthenium(II) polyazine complex as the heterogeneous photoredox catalyst in methanol at room temperature (Table 1). The substrate scope studies revealed a better reactivity of aromatic tertiary amines substituted with electron-donating groups compared to
  • methods remains as a limitation in this area. The use of non-toxic and environment friendly cyanating agents such as NCTS, acetone cyanohydrin, ethyl cyanoformate etc needs more attention in future. Scientists can also focus more on cyanation reactions using photoredox catalyst. The larger availability of
  • using heterogeneous photoredox catalyst. Funding TA, CMA, and PVS thank the Council of Scientific and Industrial Research (CSIR New Delhi) for the award of research fellowships. GA thanks the Kerala State Council for Science Technology & Environment (KSCSTE, Trivandrum) for financial support in the
PDF
Album
Review
Published 04 Jan 2022

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • ester acted as an ideal radical precursor and accepted a single electron from the excited state CuI-acetylide complex. The copper catalyst plays a dual role, namely, as a photoredox catalyst and a cross-coupling catalyst. NHP-type esters inhibited the homodimerization of the alkyl radical and terminal
  • aliphatic amines [84] 46. The results of the mechanistic studies showed that a copper/tridentate carbazolide-bisphosphine ligand complex serves as a new photoredox catalyst engaged in the electron transfer to the electrophile. Under photoexcitation, the excited photoredox catalyst F reduces the alkyl halide
  • (sp2)–H bonds of azoles was developed by Zhang [89]. A 2,2’-bipyridine copper coordination compound served as the photoredox catalyst and accomplished the azole C–H arylations. Under irradiation with blue LED, the photoexcited state [LnCuI-benzoxazole]* (C) engages in a double electron-transfer process
PDF
Album
Review
Published 12 Oct 2021

Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation

  • Azra Kocaarslan,
  • Zafer Eroglu,
  • Önder Metin and
  • Yusuf Yagci

Beilstein J. Org. Chem. 2021, 17, 2477–2487, doi:10.3762/bjoc.17.164

Graphical Abstract
  • absorption, and novel electronic band structure, fills the gap between graphene and wide bandgap semiconductors [35][38]. Furthermore, BP shows a layer thickness tunable bandgap ranging between 0.3 and 2.1 eV. Therefore, BPNs can efficiently be applied as a photoredox catalyst with broadband solar absorption
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • -covalent catalysis with photoredox catalysis was reported by Rono and Knowles in 2013 (Scheme 15) [57]. They showed that using a chiral phosphoric acid (CPA), a photoredox catalyst and Hantzsch ester (HEH) as a HAT reagent, a concerted proton-coupled electron transfer (PCET) process is promoted to form
PDF
Album
Review
Published 29 Sep 2020

A complementary approach to conjugated N-acyliminium formation through photoredox-catalyzed intermolecular radical addition to allenamides and allencarbamates

  • Olusesan K. Koleoso,
  • Matthew Turner,
  • Felix Plasser and
  • Marc C. Kimber

Beilstein J. Org. Chem. 2020, 16, 1983–1990, doi:10.3762/bjoc.16.165

Graphical Abstract
  • in the synthesis of N,N’-aminals [50]. Therefore, photoredox-catalysis would be employed to generate an electrophilic radical that would add to the central carbon of the allenamide 1 to give a transient radical 13, whose oxidation, facilitated by the photoredox catalyst [47][48], would provide the
PDF
Album
Supp Info
Letter
Published 12 Aug 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • similar arylation was disclosed by Balaraman et al. using eosin Y as a photoredox catalyst (Figure 24) [86]. This methodology operated under mild conditions, was efficient using a low loading of both catalysts and could be scaled-up to a gram-scale. The procedure featured a good functional tolerance and
  • molecular oxygen enables to close the catalytic cycle by sequentially oxidizing the photoredox catalyst and the Pd(III) species via the formation of superoxide anion. In this way, the photocatalyst is regenerated in its ground state and the Pd(IV) intermediate undergoes fast reductive elimination
  • . Furthermore, a peroxide (TBHP) is needed to oxidize the Ir-based photoredox catalyst and to generate the acyl radical via hydrogen atom transfer. From the mechanistic perspective this synergistic dual catalytic system merging C–H activation and photocatalysis is similar to the one described by Sanford for the
PDF
Album
Review
Published 21 Jul 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • biaryls 5.1a–d in up to excellent yields at room temperature by using α-bromoesters as radical precursors and [fac-Ir(ppy)3] as the photoredox catalyst [49]. A similar photocatalyzed tandem insertion/cyclization approach based on isocyanides and amino acid/peptide-derived Katritzky salts as precursors of
  • - [55][56] phenanthridines was investigated. On the other hand, Umemoto’s reagent 7.2 was widely employed to introduce a trifluoromethyl group. In one instance, the visible-light irradiation of isocyanides 7.1 in the presence of excess 7.2 (4 equiv) and the Ru(bpy)32+ photoredox catalyst afforded the
  • highly regioselective strategy for the synthesis of a library of polyheteroaromatic compounds under photocatalytic conditions was reported (Scheme 13). The process made use of fac-Ir(ppy)3 (0.3 mol %) as the photoredox catalyst and occurred at room temperature under extremely mild conditions. The
PDF
Album
Review
Published 25 Jun 2020

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • method is also applicable for the synthesis of a wide variety of cyclopentane derivatives [12]. In 2017, Huang and co-workers reported a [4 + 2] cycloaddition reaction promoted by blue LED light, using aromatic olefins as the precursor, an acridinium photoredox catalyst (Mes–Acr–Ph+BF4−), and disulfide
  • photoredox catalyst or a carbocation species, which suppresses the formation of side products that are observed when using other methods. The suggested mechanism by Cheng and co-workers is shown in Scheme 16. The reaction could go through two possible pathways. The generation of the phenyl thiyl radical 43
  • are used as the photoredox catalyst to prepare the corresponding primary and secondary alcohols from terminal and internal olefins. The substrate scope is broad, with excellent regioselectivities and yields up to 96% (Scheme 17). Decarboxylation reactions Carboxylic acid often serves as an inexpensive
PDF
Album
Review
Published 23 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • either oxidative or reductive SET with an excited photoredox catalyst. The most used scaffolds consist of electron-poor O-acyl and O-aryl hydroxylamines, which are prone to reduction, and α-N-oxy acids, which undergo oxidations followed by β-scission [128][136][139]. Leonori first described how O-aryl
PDF
Album
Review
Published 29 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • reported a metal-free photoarylation of five-membered heteroarenes with aryldiazonium salts and meso-arylated porphyrin derivatives as photoredox catalyst [11]. Compounds such as furan, thiophene, and N-Boc-pyrrole derivatives were obtained by this methodology in 29–81% yields (Scheme 3). The key-step of
  • , meta and para positions. Moreover, the methodology also showed effectiveness for heteroarenes such as pyridines and benzothiazoles. The authors also evaluated the use of NiTPP as a photoredox catalyst for other transformations involving both oxidative and reductive quenchings. The NiTPP-catalyzed
  • tetrahydroquinolines by reductive quenching. Selenylation and thiolation of anilines. NiTPP as photoredox catalyst in oxidative and reductive quenching, in comparison with other photocatalysts. C–O bond cleavage of 1-phenylethanol using a cobalt porphyrin (CoTMPP) under visible light. Hydration of terminal alkynes by
PDF
Album
Review
Published 06 May 2020

Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N-alkylpyrydinium salts

  • David Schönbauer,
  • Carlo Sambiagio,
  • Timothy Noël and
  • Michael Schnürch

Beilstein J. Org. Chem. 2020, 16, 809–817, doi:10.3762/bjoc.16.74

Graphical Abstract
  • demonstrate the deaminative coupling of N-benzylpyridinium Katritzky salts with THIQs under ruthenium photoredox catalysis. During the preparation of this article, a similar transformation was disclosed using an iridium photoredox catalyst [47]. Results and Discussion We started our investigations by
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • solvents did not lead to any significant increase of the yield or selectivity (Table 1, entries 5–9). The reduction of catalyst loading resulted in a lower yield and a lower selectivity for the acid compound 3 (Table 1, entries 10–14). The products indicate an oxidative quenching of the photoredox catalyst
  • absence of the photoredox catalyst or light, the reaction does not take place (Table 1, entries 19 and 20). Notably, during the reaction, the bright yellow color of the solution resulting from the absorption of the catalyst disappears and an insoluble precipitate is formed. The use of C6D6 as a solvent
  • -yl)-10-(naphthalen-1-yl)-10H-phenoxazine instead of [Ir(ppy)3] as the photoredox catalyst had no beneficial effect on the yield or conversion, and also led to the formation of a precipitate. However, the precipitate that was formed when the organic dye 5,10-di(naphthalene-2-yl)-5,10-dihydrophenazine
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020
Other Beilstein-Institut Open Science Activities